

E-LEARNING SYSTEM: A SERVICES ORIENTED ARCHITECTURE APPROACH

Marin Lungu, Dan-Ovidiu Andrei, Gabriel Toma-Tumbar, Lucian – Florentin Barbulescu

University of CraiovaFaculty of Automation, Computers and Electronics

Computer and Communications Engineering Department

Abstract: The article presents a new approach to e-learning systems, the architecture

based on services, or as it is well known today: Services Oriented Architecture. This

architecture best fits an e-Learning system because the prresentation and workflow are

constructed from multiple shared services, data and business function are encapsulated in

services. Many functions within an e-learning system can be „exported” to services

offered by the environment to applications.

Keywords: Services oriented architecture, SOA, e-learning.

1. OVERVIEW

The project's goals are implementing the latest

techniques (Services Oriented Architectures) in

design, implementation and exploatation of an

application inside a distributed environment of

resources and users. The services oriented

architectures are using object description languages

and their interactions having interfaces that are to be

used for delivering the services. Each object is

offering independent services and the calling

mechanisms are platform independent. Such a

complex architecture is used for implementing

distributed systems; in particular, the e-learning

applications are well fit for this context. This projects

combines a modern approach for services oriented

complex systems with an application in a high

priority domain of current society evolution -

permanent information and learning by electronic

means. The final product will be a framework for

creating and validating educational modules, learning

the students and testing their knowledge. The means

of data transport for the proposed application will be

the Internet; this environment's vulnerabilities are

well known and there rises the need for security

mechanisms for user access to the system resources

as well as for the data stream. The final phase of the

system will be built from the following 'bricks': a

component responsinble for creating and editing

educational modules, the educational modules

validatidation component, the access component, the

testing and automatic evaluation component.

In 2005 the world software market in general and the

e-learning systems available in Romania in particular

offers products that cover partly the advancements of

the new design, implementation and management

technologies and of the corresponding equipments

(KnowledgePresenter 2005 Professional, MindVision

e-learning software, Kallidus, TopClass Publisher,

Cognitivity etc.)

The e-learning presents come unique characteristics,

for example the use of collaborative instruments like

chat or conferencing, navigational options that can

put learning into an explanatory mode, and the use of

simulation for training of problem-solving skils.

(Ruth Colvin Clark, E-Learning and the Science of

Instruction : Proven Guidelines for Consumers and

Designers of Multimedia Learning, John Wiley &

sons, 2003, ISBN: 0-7879-6051-9)

Many e-learning applications are strictly oriented to

some specific directions and have pure commercial

goals. In this moment it is needed a new application

built on modern technologies and which can be easily

customized for a variety of learners.

The majority of existing e-learning applications are

in fact web sites where the main goals are customize

the e-learning process, acce3pt learners in a pay-per-

use mode, implement some security elements etc.

The technologies used are in most of the cases old.

For example, a php web-site is not a good solution

any more mainly because of the security problems it

has and of the performance which decreases with the

number of users .

Even though we have decades of experience in

software production, there are still challenges and

unsolved problems in the management of their

complexity. As complexity grows, researchers try to

find new technologies to solve this problem. SOA

combined with web-services represents the newest

solution. SOA is the best scalable solution for a

complex application. (Sayed Hashimi, Service-

Oriented Architecture Explained, O'Reilly Network,

2003).

The new research and implementation directions of

complex applications in Internet are based on service

oriented architectures, those being available to clients

regardless of the platform they use.

Fig. 1. Lesson Flow

The system is based on the concept of lessons and

their versions. A Lesson is in fact a discussion topic.

The peoples that work on a lesson will provide

several implementations of that specific topic.

There are several types of users found within the e-

learning system. Some of those users can be

considered “producers” while others can be called

“consumers”. In the following all the users found

within the system are presented:

1.1 Authors

The author is the creative force behind the lesson

system. He can browse the lesson catalog then select

and download an empty lesson for further

development. He also has the possibility to request

the editor for the holder right of a particular lesson.

In case there is a lesson he wants to develop that does

not appear in the catalogue, the author can submit a

request to an editor to have it added to the lesson

catalogue. If he desires to collaborate with some of

his Author colleagues, he can choose to select those

persons by designating them as Co-Authors. He

cannot however pass the Holder right to one such Co-

Author. An author can upload a lesson to the

Collaboration Area – a lesson pool where he (and the

Co-Authors) can share (upload and download)

intermediate lesson versions. If the Author has

Holder right, he can also submit his version for

revision to the Editor as Request to Edit Version

(REV). Alternatively, he can select one of the

versions in the Collaboration Area as the Request to

Edit Version and submit it to the Editor. Note: each

lesson has its own Collaboration Area for the authors

working on it. Once the lesson is submitted to the

Editor for review, the Request to Edit Version is

locked until an Editor either qualifies the lesson for

the next level (Publishing) or returns feedback to

Author on how to further improve the content.

Lesson sharing is also freely available outside the

Collaboration Area – the Author can export the local

lesson to one file and send it by e-mail or disk to

other Authors.

1.2 Holders

A Holder is an Author with additional Holder rights

granted on a lesson basis. As such, a Holder can

perform all the Author actions described in the above

section. In addition below are described the tasks that

are specific to a Holder

1.3 Editors

The Editor is responsible with issuing and revoking

authorization for Authors; he grants and revokes the

Holder right to an Author for a specific lesson. The

Editor also assures the quality control for all new

lessons and re-created lessons. He analyzes the

requests submitted by authors to add new lessons in

the catalog and reviews a lesson submitted by an

Author as Request to Edit Version. Upon successful

revision of such a lesson, the Editor recommends it

for publishing to the Publisher as a Request to

Publish Version. Upon negative revision, he can

provide feedback to the Authors of a lesson by

making suggestions and comments to in order to

have the lesson better match the requirements. In

completing all these tasks the Editor mainly

communicates with Authors, Holders and Publishers.

1.4 Publisher

The Publisher covers the last phase of the lessons

generation. He receives the lessons approved by the

Editor and performs a final verification on the

content. In this he mainly checks for violations of the

Law of Author Rights. If such violations are

encountered, he informs the Editor and provides him

with feedback on the reasons. In case the lesson is

approved for publishing, the lesson is marked as

‘Currently Published’ and thus available to be chosen

in the learning path of students. The Publisher also

supervises the updates on the lesson catalogue. He

receives from the Editor the lessons approved to be

entered in the catalogue and fills the required

information for an empty lesson. Also when the

Editor designates a lesson as no longer needed in the

system, the Publisher marks it as ‘Out of Publish’ in

the catalogue. A lesson with this status can still be

downloaded by students that already have it assigned

in the learning path. It cannot however be assigned in

new learning paths. When the ‘Out of Publish’ lesson

is no longer used by any student, the lesson should

receive a new status from the Publisher i.e.

‘Archive’.

1.5 Learner

The Learner is the ultimate target of the System.

Upon registration within the system a learner can

download the Learner Kit; he follows interactive

lessons and takes administered exams and tests. He

has an assigned Tutor, who creates his Learning Path

and monitors his progress. Tools are provided for

seamless communication between the Learner and

the Tutor. The System extracts and uploads relevant

data from Learner’s study patterns and exams,

allowing the Tutor insightful performance reviews.

1.6 Tutor

The Tutor is the direct supervisor of a Learner. He

creates (or selects from a system list) the Learner’s

Learning Path, evaluates his performance and

provides the Learner with feedback on the results and

progress. The Tutor uses tools to freely communicate

with his Learners and their Parents.

1.7 Parents

The Parent can view Learner’s progress and

performance. He also has the ability to communicate

with the Learner’s Tutor using ’ tools.

1.8 User Manager

The UserManager is an administrative role that

receives and evaluates the online requests for

authorization from Author, Editor, Publisher,

Learner, Tutor and Parent users. He can create, edit

and delete user accounts for these roles. Furthermore,

the UserManager is in charge with assigning

Learners to Tutors. If for some reason the Tutor must

be changed for a Learner, the UserManager has the

ability to make such a change.

1.9 Administrator

The Administrator is able to by-pass the normal

workflow so that in extraordinary circumstances the

system does not stop from working properly. He can

perform all the tasks assigned to the UserManager,

with the addition that he is also permitted to create

UserManager and Administrator accounts.

Furthermore he can send notifications to users of all

types and force-change the rights of an Author on a

lesson (such as the Holder right). He is allowed to

by-pass the normal Lesson flow by moving a lesson

from any one area to another (ex. from Collaborative

Area to Publishing).The Administrator also has

access to the system logs, detailing the time-stamped

actions of all users.

1.10 Automatic

The Automatic system of has the ability to send

notifications on predetermined triggers (such as

inactive users or special status changes for lessons).

It also has the responsibility to log and timestamp

user actions

1. SERVICES ORIENTED ARCHITECTURES

(SOA)

Definition: SOA is an architectural style whose goal

is to achieve loose coupling among interacting

software agents.

Figure 1 - Services Oriented Architecture

The participants in the Services Oriented

Architecture are:

• Service (service provider)

• Service directory

• Service consumer

Service (Service Provider): The service provider is

responsible for publishing a description of the service

to the service registry. Normally, the service provider

hosts the web service.

Service Directory: The service registry is a repository

that provides the capability of discovering services

by the service requestors.

Service Consumer: A software application that is

responsible for discovering and invoking the service.

The service requestor binds to the service obtained

from the service registry.

A service is a unit of work done by a service provider

to achieve desired end results for a service consumer.

Both provider and consumer are roles played by

software agents on behalf of their owners.

\

Figure 2 – Service Request/Response

SOA achieves loose coupling among interacting

software agents so by employing two architectural

constraints:

• A small set of simple and ubiquitous interfaces

to all participating software agents. Only generic

semantics are encoded at the interfaces. The

interfaces should be universally available for all

providers and consumers.

• Descriptive messages constrained by an

extensible schema delivered through the

interfaces. No, or only minimal, system behavior

is prescribed by messages. A schema limits the

vocabulary and structure of messages. An

extensible schema allows new versions of

services to be introduced without breaking

existing services.

Conceptually, there are three major levels of

abstraction within SOA:

• Operations: Transactions that represent single

logical units of work (LUWs). Execution of an

operation will typically cause one or more

persistent data records to be read, written, or

modified. SOA operations are directly

comparable to object-oriented (OO) methods.

They have a specific, structured interface, and

return structured responses. Just as for

methods, the execution of a specific operation

might involve invocation of additional

operations.

• Services: Represent logical groupings of

operations. For example, if we view Customer

Profiling as a service, then, Lookup customer

by telephone number, List customers by name

and postal code, and Save data for new

customer represent the associated operations.

• Business Processes: A long running set of

actions or activities performed with specific

business goals in mind. Business processes

typically encompass multiple service

invocations. Examples of business processes

are: Initiate New Employee, Sell Products or

Services, and Fulfill Order.

In SOA terms, a business process consists of a series

of operations which are executed in an ordered

sequence according to a set of business rules. The

sequencing, selection, and execution of operations

are termed service or process choreography.

Typically, choreographed services are invoked in

order to respond to business events.

Since we have only a few generic interfaces

available, we must express application-specific

semantics in messages. We can send any kind of

message over our interfaces, but there are a few rules

to follow before we can say that an architecture is

service oriented.

First, the messages must be descriptive, rather than

instructive, because the service provider is

responsible for solving the problem. This is like

going to a restaurant: you tell your waiter what you

would like to order and your preferences but you

don't tell their cook how to cook your dish step by

step.

Second, service providers will be unable to

understand your request if your messages are not

written in a format, structure, and vocabulary that is

understood by all parties. Limiting the vocabulary

and structure of messages is a necessity for any

efficient communication. The more restricted a

message is, the easier it is to understand the message,

although it comes at the expense of reduced

extensibility.

Third, extensibility is vitally important. It is not

difficult to understand why. The world is an ever-

changing place and so is any environment in which a

software system lives. Those changes demand

corresponding changes in the software system,

service consumers, providers, and the messages they

exchange. If messages are not extensible, consumers

and providers will be locked into one particular

version of a service. Despite the importance of

extensibility, it has been traditionally overlooked. At

best, it was regarded simply as a good practice rather

than something fundamental. Restriction and

extensibility are deeply entwined. You need both,

and increasing one comes at the expense of reducing

the other. The trick is to have a right balance.

Fourth, an SOA must have a mechanism that enables

a consumer to discover a service provider under the

context of a service sought by the consumer. The

mechanism can be really flexible, and it does not

have to be a centralized registry.

Additional constraints

There are a number of additional constraints one can

apply on SOA in order to improve its scalability,

performance and, reliability.

2.1 Stateless Service

Each message that a consumer sends to a provider

must contain all necessary information for the

provider to process it. This constraint makes a service

provider more scalable because the provider does not

have to store state information between requests.

This is effectively "service in mass production" since

each request can be treated as generic. It is also

claimed that this constraint improves visibility

because any monitoring software can inspect one

single request and figure out its intention. There are

no intermediate states to worry about, so recovery

from partial failure is also relatively easy. This makes

a service more reliable.

2.2 Stateful Service

Stateful service is difficult to avoid in a number of

situations. One situation is to establish a session

between a consumer and a provider. A session is

typically established for efficiency reasons. For

example, sending a security certificate with each

request is a serious burden for both any consumer

and provider. It is much quicker to replace the

certificate with a token shared just between the

consumer and provider. Another situation is to

provide customized service.

Stateful services require both the consumer and the

provider to share the same consumer-specific

context, which is either included in or referenced by

messages exchanged between the provider and the

consumer. The drawback of this constraint is that it

may reduce the overall scalability of the service

provider because it may need to remember the shared

context for each consumer. It also increases the

coupling between a service provider and a consumer

and makes switching service providers more difficult.

2.3 Idempotent Request

Duplicate requests received by a software agent have

the same effects as a unique request. This constraint

allows providers and consumers to improve the

overall service reliability by simply repeating the

request if faults are encountered.

REFERENCES

Clark R.C. (2003), E-Learning and the Science of

Instruction : Proven Guidelines for Consumers

and Designers of Multimedia Learning, John

Wiley & sons, ISBN: 0-7879-6051-9

Hashimi S (2003), Service-Oriented Architecture

Explained, O'Reilly Network

OASIS, Reference Model for Service Oriented

Architectures, Working Draft 08, September 14,

2005, http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=s

oa-rm

Rogers R. , Reuse engineering for SOA, Senior

Technical Staff Member, IBM

Rosenberg M.J. (2001), E-Learning: Strategies for

Delivering Knowledge in the Digital Age,

McGraw-Hill, ISBN: 0-07-136268-1

W3C Working Group Note, Web Services

Architecture, http://www.w3.org/TR/ws-arch/ ,

11 February 2004

